Monday, 10 July 2017

Error In Moving Average


Como calcular médias móveis no Excel Análise de dados do Excel para Dummies, 2ª edição O comando Análise de dados fornece uma ferramenta para calcular movimentação e médias exponencialmente suavizadas no Excel. Suponha, por uma questão de ilustração, que você tenha coletado informações diárias sobre temperatura. Você quer calcular a média móvel de três dias 8212 a média dos últimos três dias 8212 como parte de algumas previsões meteorológicas simples. Para calcular médias móveis para este conjunto de dados, execute as seguintes etapas. Para calcular uma média móvel, clique primeiro no botão de comando Dados da análise de dados tab8217s. Quando o Excel exibe a caixa de diálogo Análise de dados, selecione o item Média móvel da lista e clique em OK. O Excel exibe a caixa de diálogo Média móvel. Identifique os dados que você deseja usar para calcular a média móvel. Clique na caixa de texto Intervalo de Entrada da caixa de diálogo Média Móvel. Em seguida, identifique o intervalo de entrada, digitando um endereço de intervalo de planilha ou usando o mouse para selecionar o intervalo de planilha. Sua referência de intervalo deve usar endereços de célula absolutos. Um endereço de célula absoluto precede a letra da coluna eo número da linha com sinais, como em A1: A10. Se a primeira célula do intervalo de entrada incluir um rótulo de texto para identificar ou descrever os dados, marque a caixa de seleção Etiquetas na primeira linha. Na caixa de texto Intervalo, informe ao Excel quantos valores devem ser incluídos no cálculo da média móvel. Você pode calcular uma média móvel usando qualquer número de valores. Por padrão, o Excel usa os três valores mais recentes para calcular a média móvel. Para especificar que algum outro número de valores seja usado para calcular a média móvel, insira esse valor na caixa de texto Intervalo. Diga ao Excel onde colocar os dados da média móvel. Use a caixa de texto Range de saída para identificar o intervalo de planilha na qual você deseja inserir os dados de média móvel. No exemplo da folha de cálculo, os dados da média móvel foram colocados no intervalo B2: B10 da folha de cálculo. (Opcional) Especifique se você deseja um gráfico. Se você desejar um gráfico que traça as informações de média móvel, marque a caixa de seleção Saída do gráfico. (Opcional) Indique se deseja que as informações de erro padrão sejam calculadas. Se você deseja calcular erros padrão para os dados, marque a caixa de seleção Erros padrão. O Excel coloca valores de erro padrão ao lado dos valores da média móvel. (As informações de erro padrão passam para C2: C10.) Depois que você terminar de especificar quais informações de média móvel você deseja calcular e onde deseja colocá-las, clique em OK. O Excel calcula as informações da média móvel. Nota: Se o Excel não possui informações suficientes para calcular uma média móvel para um erro padrão, ele coloca a mensagem de erro na célula. Você pode ver várias células que mostram esta mensagem de erro como um valor. Dados suaves remove variação aleatória e mostra tendências e componentes cíclicos Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Ele / ela toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma maneira de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados do MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra forma de calcular a média é adicionando cada valor dividido pelo número de valores, ou 3/3 4/3 5/3 1 1.3333 1.6667 4. O multiplicador 1/3 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. 1.8.4 Modelos de média móvel Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em uma regressão - Como modelo. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). É claro que não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só mudará a escala da série, não os padrões. É possível escrever qualquer modelo AR (p) estacionário como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e amptext final Fornecido -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Modelos Invertiveis não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos.

No comments:

Post a Comment